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Thermal Contact Resistance of Nonconforming Rough Surfaces,
Part 1: Contact Mechanics Model

M. Bahrami,∗ J. R. Culham,† M. M. Yovanovich,‡ and G. E. Schneider§

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A new analytical model for spherical rough contacts, in the form of a set of relationships, is developed and solved
numerically. It is shown that the maximum contact pressure is the parameter that specifies the contact pressure
distribution. Simple correlations for calculating the maximum contact pressure and the radius of the macrocontact
area as functions of the nondimensional parameters are proposed. A relationship for pressure distributions is
derived where the load is higher than the critical load. A general pressure distribution is developed that covers the
entire range of spherical contacts from the smooth Hertzian to the conforming rough contact. Finally, a criterion
is derived to identify flat surfaces where the surface curvature has negligible effect on the contact pressure.

Nomenclature
A = area, m2

a = radius of contact, m
a′

L = relative radius of macrocontact, aL/aH

as = radius of microcontacts, m
b = flux tube radius, m
c0 = function of τ , 1.8 τ−0.028

c′
0 = function of τ , 0.31 τ 0.056

c1 = Vickers microhardness coefficient, GPa
c2 = Vickers microhardness coefficient
dr = increment in radial direction, m
dv = Vickers indentation diagonal, µm
E = Young’s modulus, GPa
E ′ = equivalent elastic modulus, GPa
F = external force, N
F∗ = relative force error
fi = discrete point forces, N
Hmic = microhardness, GPa
m = mean absolute surface slope
ns = number of microcontacts
P = pressure, Pa
P ′

0 = relative maximum pressure, P0/P0,H

r , z = cylindrical coordinates
u = sphere profile, m
u0 = maximum indentation, m
Y = mean surface plane separation, m
α = nondimensional parameter, σρ/a2

H
β = summits radii of curvature, m
γ = general pressure distribution exponent
δ = max surface out-of-flatness, m
ηs = microcontacts density, m−2

λ = nondimensional separation, Y/
√

(2)σ
ν = Poisson’s ratio
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ξ = nondimensional radial position, r/aL

ρ = radius of curvature, m
σ = rms surface roughness, µm
τ = nondimensional parameter, ρ/aH

ωb = bulk normal deformation, m

Subscripts

a = apparent
b = bulk
c = critical
H = Hertz
L = large, macro
r = real
s = small, summit
v = Vickers
0 = value at origin
1, 2 = surface 1, 2

Introduction

A N accurate knowledge of contact mechanics, that is, the pres-
sure distribution, the size of contact area, and the mean sepa-

ration between surface planes as functions of applied load, and the
geometrical and mechanical characteristics/properties of the con-
tacting bodies, plays an important role in predicting and analyz-
ing thermal and electrical contact resistance and many tribological
phenomena.

The contact of two spherical rough surfaces includes two prob-
lems with different scales, 1) the bulk- or macroscale problem,
that is, bulk elastic compression, which can be calculated using the
Hertz1 theory for ideal smooth mean profiles of two surfaces, and 2)
the small- or microscale problem, that is, deformation of surface as-
perities. The scales of the subproblems (macro and micro) are very
different yet, at the same time, strongly interconnected. Because of
surface roughness, contact between two surfaces occurs only at dis-
crete microscopic contacts and the real area of contact, the total area
of these microcontacts, is typically a small fraction of the nominal
contact area.2,3 The macrocontact area is defined as the area in which
the microcontacts are distributed, also the contact pressure falls off
to a negligible value at the edge of the macrocontact. The surface
asperities act like a compliant layer on the surface of the contacting
bodies, so that the contact is extended over a larger apparent area
than it would be if the surfaces were smooth, and consequently, the
contact pressure for a given load will be reduced.4

Developing an analytical model, which enables one to predict the
contact parameters such as pressure distribution and the size of the
macrocontact area, is the main goal of this study. It is also required to
find simple correlations for determining the contact parameters that
can be used in analytical thermal contact models. Another purpose
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of this research is to find a criterion to define the flat surface where
the surface curvature can be neglected.

Theoretical Background
As already mentioned, the spherical rough contact mechanics

problem is divided into macro- and micro-sub-problems. The macro-
problem is the contact of two spherical bodies, which in this study
is assumed to be within the elastic limit, and the micro or the defor-
mation of the surface asperities is assumed to be plastic.

Microcontact Modeling
The solution of any contact mechanics problem requires that the

geometry of the intersection and overlap of the two undeformed
surfaces be known as a function of their relative position. If the
asperities of a surface are isotropic and randomly distributed over
the surface, the surface is called Gaussian. Williamson et al.5 have
shown experimentally that many of the techniques used to produce
engineering surfaces give a Gaussian distribution of surface heights.
Many researchers, including Greenwood and Williamson3 assumed
that the contact between two Gaussian rough surfaces can be sim-
plified to the contact between a single Gaussian surface, having the
effective (sum) surface characteristics, placed in contact with a per-
fectly smooth surface, as shown in Fig. 1. The equivalent roughness
σ and surface slope m can be found from

σ =
√

σ 2
1 + σ 2

2 , m =
√

m2
1 + m2

2 (1)

Bahrami et al.,6 based on the deformation mode of asperities, cat-
egorized existing microcontact mechanical models into three main
groups: elastic, plastic, and elastoplastic. By comparing the elas-
tic model of Greenwood and Williamson3 and the plastic model of
Cooper et al.7 for nominal flat contacts, Bahrami et al.6 showed that
the behavior of the preceding models are similar, despite the differ-
ent assumed deformation mode of asperities. They also concluded
that, in most real contacts, asperities deform plastically except for
special cases where the surfaces are extremely smooth; see Bahrami
et al.6 for more detail.

The present model is developed assuming the asperities deform
plastically. Plastic models assume that the asperities are flattened
during contact. This is the same as assuming that the asperities
penetrate into the smooth surface in the equivalent model, without
any change in shape of the parts of the equivalent rough surface
not yet in contact. Therefore, bringing two rough surfaces together
within a distance Y is equivalent to removing the top of the asper-
ities at a height Y above the mean plane. The assumption of pure
plastic microcontacts enables the micromechanics to be specified
completely by the mean slope m and the surfaces roughness σ ,
without having to assume some deterministic peak shapes, as with
elastic microcontact models. Cooper et al.7 derived the following
relationships for contact of nominal flat rough surfaces, assuming
plastically deformed hemispherical asperities whose height and sur-
face slopes have Gaussian distributions, where the mean separation

Fig. 1 Equivalent contact of conforming rough surfaces.

Y is constant throughout the contact plane:

as =
√

8/π(σ/m) exp(λ2)erfc λ

ns = 1
16 (m/σ)2[exp(−2λ2)/erfc λ]Aa

Ar/Aa = 1
2 erfc λ (2)

where λ = Y/
√

(2)σ , ns , as , Ar , and Aa are the dimensionless mean
plane separation, number and average size of microcontacts, and the
real and the apparent contact area, respectively.

Microhardness
Microhardness is not constant throughout the material. Hegazy8

demonstrated through experiments with four alloys that the effec-
tive microhardness is significantly greater than the bulk hardness.
Microhardness decreases with increasing depth of the indenter un-
til bulk hardness is obtained. He derived empirical correlations to
account for the decrease in contact microhardness of the softer sur-
face with increasing depth of penetration of asperities on the harder
surface:

Hv = c1(d
′
v)

c2 (3)

where Hv is the Vickers microhardness in gigapascal, d ′
v = dv/d0,

d0 = 1 µm, and c1 and c2 are correlation coefficients determined
from the Vickers microhardness measurements.

Macrocontact Modeling
According to Johnson,4 in static frictionless contact of solids,

the contact stresses depend only on the relative profile of the two
surfaces, that is, on the shape of the interstitial gap before loading.
Hertz1 replaced the two spheres contact geometry by a flat surface
and a profile, which results in the same undeformed gap between the
surfaces. Additionally, all elastic deformations can be considered to
occur in one body, which has an effective elastic modulus E ′, and
the other body is assumed to be rigid. The effective elastic modulus
can be found from

1/E ′ = (
1 − υ2

1

)/
E1 + (

1 − υ2
2

)/
E2 (4)

For the contact of two spheres, the effective radius of curvature is

1/ρ = 1/ρ1 + 1/ρ2 (5)

As a result of the preceding assumptions and by considering ax-
isymmetric loading, the complex geometry of two spherical rough
surfaces is simplified to a rigid smooth sphere having the equiva-
lent radius of curvature in contact with a rough flat, which has the
equivalent surface characteristics (Fig. 2).

The open literature contains very few analytical mechanical mod-
els for the contact of spherical rough surfaces. The first in-depth
analytical study to investigate the effect of roughness on the pres-
sure distribution and deformation of contacting elastic spherical
bodies was performed by Greenwood and Tripp.9 Greenwood and
Tripp developed their model based on the same assumptions as
the Greenwood and Williamson3 nominal flat rough contact model.
Their assumptions can be summarized as follows:

Fig. 2 Equivalent contact geometry of two spherical rough surfaces.
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1) Contact is axisymmetric, and the bulk deformation is elastic.
2) Rough surfaces are isotropic with Gaussian height distribution

and a standard deviation σ .
3) The distribution of summit heights is the same as the surface

heights standard deviation, that is, σs = σ .
4) The deformation of each asperity is independent of its neigh-

bors.
5) The asperity summits have a spherical shape, all with a constant

radius β, the asperities entirely deform within the elastic limit, and
Hertz1 theory can be applied for each individual summit.

Greenwood and Tripp9 derived a geometrical relationship relating
the local separation to the bulk deformation and the sphere profile.
The elastic deformations produced by a pressure distribution over
an area of the surface can be calculated by superposition, using
the Boussinesq solution for a concentrated load on a half-space,
and the fact that the displacement due to an axisymmetric pressure
distribution will also be axisymmetric. It can be shown that the
normal displacement in a half-space due to an arbitrary pressure
distribution can be found from10

ωb(r) =






2

E ′

∫ ∞

0

P(s) ds r = 0

4

π E ′r

∫ r

0

s P(s)K

(
s

r

)
ds r > s

4

π E ′

∫ ∞

r

P(s)K

(
r

s

)
ds r < s (6)

where ωb(r) is the local bulk deformation, K (·) is the complete ellip-
tic integral of the first kind, and s is a dummy variable. Greenwood
and Tripp9 used Eq. (6), which gave a complementary relation be-
tween local separation and the pressure. They reported a complete
set of relationships and solved it numerically.

The most important trends in the Greenwood and Tripp9 model
were that an increase in roughness resulted in a decrease in the
contact pressure, compared with the Hertzian pressure, and that
the effective macroscopic contact radius grew beyond the Hertzian
contact radius. The Greenwood and Tripp9 model is attractive for
its mathematical simplicity, but it suffers from the following short-
comings:

1) A constant summit radius β is unrealistic. For a random surface,
β is also a random variable.11

2) Two of its input parameters, that is, radius of summits β and
density of summits ηs cannot be measured directly and must be es-
timated through statistical calculations. These parameters are sen-
sitive to the surface measurements.4

3) Applying the model is complex and requires computer pro-
gramming and numerically intensive solutions.

4) All asperities are assumed to deform elastically.
Tsukada and Anno12 and Sasajima and Tsukada13 with the

same assumptions as Greenwood and Tripp9 developed a model
and offered expressions for pressure distribution as a function of
nondimensional maximum pressure, P0/P0,H , and nondimensional
radius of macrocontact area, aL/aH , for rough sphere–flat contacts.
Tsukada and Anno12 and Sasajima and Tsukada13 presented these
two parameters in a graphical form, in discrete curves, for relatively
small radii of curvature, that is, 5, 10, and 15 mm and roughness in
the range of 0.1–2 µm. They did not report general expressions for
the maximum pressure and the radius of macrocontact.

Present Model
The micromechanical analysis of the present model is developed

on the basis of the Cooper et al.7 plastic model. The macrocontact
area is divided into infinitesimal conforming surface elements where
the conforming rough surface relationships, that is, Eqs. (2), can be
applied. Bulk deformations are related to the local separation of the
contacting surfaces, through a geometrical relationship similar to
Greenwood and Tripp.9 The assumptions of the present model can
be summarized as follows:

1) Contacting surfaces are macroscopically spherical, which are
considered as a sphere–flat contact (Fig. 2).

2) Microscopically, contacting surfaces are rough and isotropic
with a Gaussian asperity distribution. Only one surface is taken to
be rough, whereas the equivalent roughness is assumed to be on the
flat plane and the sphere is assumed to be smooth.

3) Microcontacts deform plastically, and the asperity pressure is
the local microhardness of the softer material in contact. Reasons
supporting this assumption are discussed by Bahrami et al.6

4) Deformation of each asperity is independent of its neighbors.
5) Only the first loading cycle is considered.
6) The load is axisymmetric and the contact is frictionless, that

is, there are no tangential forces in the contact area.
7) The macrocontact is elastic, where the elasticity theory given

in Eq. (6) is employed to determine the substrate deformation.
8) The contact is static, that is, there is no relative motion or

vibration effect.
In the vicinity of the contact region, the profile of the sphere can

be written as

u(r) = u0 − r 2/2ρ (7)

Figure 3 shows the contact geometry after applying the load. The
local separation Y (r) is defined as the distance between two mean
planes of the contacting surfaces and can be written as

Y (r) = ωb(r) − u(r) = ωb(r) − u0 + r 2/2ρ (8)

At each microcontact, a discrete point force is created as shown
in Fig. 4. The sum of these discrete point forces must be equal to
the external force F . It is assumed that the asperities of the rough
surface behave like a plastic zone on an elastic half-space, in the
sense that the effect of the discrete point forces on the elastic half-
space is considered as an equivalent continuous pressure distribution
P(r). Note that all bulk deformations are assumed to occur in the
elastic half-space, which has an effective elasticity modulus E ′, and
the sphere is assumed to be rigid. Consider an infinitesimal surface

Fig. 3 Contact geometry after loading.

Fig. 4 Discrete point forces and the equivalent pressure distribution
on the plastic zone.
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element dr → 0, where Fig. 3 shows a magnified element in which
the local separation Y (r) is uniform. The ratio of real to apparent
area for a surface element can be found from Eq. (2),

d Ar (r)/d Aa(r) = 1
2 erfc λ(r) (9)

where Aa(r) = 2πrdr . As a result of surface curvature, the mean
local separation and, consequently, the mean size of the microcon-
tacts vary with radial position. The local microhardness can be de-
termined from the Vickers microhardness correlation Eq. (3) as a
function of the local mean microcontact radius. The relation be-
tween the Vickers diagonal dv and the microcontact radius as , based
on equal areas, is dv = √

(2π)as . Therefore, the local microhardness
is

Hmic(r) = c1

[√
2πas(r)

]c2
(10)

where the local radius of the microcontacts can be found from Eq. (2)

as(r) =
√

8/π(σ/m) exp[λ2(r)] erfc λ(r) (11)

The external load F is the summation of the point forces at the
microcontacts

F =
∑

i

fi =
∫

contact area

∫
Ar (r)Hmic(r) (12)

When Eq. (9) is substituted into Eq. (12),

F = π

∫ ∞

0

Hmic(r) erfc λ(r) r dr (13)

Instead of aL , the upper limit of the integral is set to infinity because
the macrocontact radius is not known and the effective pressure
distribution rapidly approaches zero. On the bulk side, the equivalent
pressure must satisfy the force balance,

F = 2π

∫ ∞

0

P(r) r dr (14)

The equivalent pressure distribution on the elastic half-space can be
found from Eqs. (13) and (14),

P(r) = 1
2 Hmic(r) erfc λ(r) (15)

When the pressure distribution is known, the normal displacement
of the bulk can be found from Eq. (6). Equations (6), (8), (10),
(11), (14), and (15) form a closed set of governing relationships. A
computer program was developed to solve the set numerically. The
algorithm of the numerical solution is described in the Appendix.

No exact definition exists for the macrocontact radius in the litera-
ture. In this study, it is assumed to be the radius where the normalized
pressure is negligible, that is, P(r = aL)/P0 < 0.01.

Numerical Results
A simulation procedure was run to construct the results shown

in Figs. 5–8, based on the algorithms described in the Appendix
and by using input data shown in Table 1. Contact of a stainless
steel sphere-flat with an equivalent radius of curvature of 25 mm,
equivalent surface roughness of 1.41 µm, and an applied load of
50 N was chosen as an example.

Figure 5 shows the pressure distribution predicted by the present
model and the Hertzian pressure. It can be seen that due to the pres-
ence of roughness the maximum contact pressure compared to the
Hertzian contact pressure is reduced and the load is spread over a
greater area. The predicted macrocontact radius aL is also shown
in Fig. 5. Unlike the Hertzian pressure, the effective pressure falls
asymptotically to zero. As expected, the mean radius of microcon-
tacts as and microcontacts density ηs decrease as the radial position
r increases. The microhardness profile is shown in Fig. 8.

To investigate the effect of roughness on the pressure distribu-
tion, the program was run for a wide range of roughness from

Table 1 Input parameters for a typical contact

Parameter Value

ρ 25 mm
σ 1.41 µm
m 0.107
F 50 N
E ′ 112.1 GPa
c1/c2 6.27 GPa/−0.15

Fig. 5 Pressure distribution.

Fig. 6 Mean microcontacts radius.

0.02 to 14.4 µm while all other parameters in Table 1 were kept
constant. Figure 9 illustrates the effect of roughness on the pres-
sure distribution. It can be seen that the effective pressure distribu-
tion approaches the Hertzian pressure distribution as the roughness
decreases.

Approximate Model
The main goal of this study is to develop simple correlations for

determining the effective pressure distribution and the macrocontact
radius as functions of nondimensional parameters that describe the
contact problem. To develop an approximate solution, the following
simplifications are made:

1) An effective microhardness Hmic that is constant throughout
the contact region is considered.

2) The surface slope m is assumed to be a function of surface
roughness, σ .
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Fig. 7 Density of microcontacts.

Fig. 8 Microhardness.

In this section, it is demonstrated that a general pressure distri-
bution as a function of the maximum contact pressure exists. Then,
with the use of dimensional analysis, the number of governing nondi-
mensional parameters is determined, and finally, simple correlations
for the maximum contact pressure and the macrocontact radius are
proposed.

Figure 10 illustrates nondimensional pressure distributions for
some values of P ′

0 = P0/P0,H as function of nondimensional ra-
dial location ξ = r/aL . It was observed that the nondimensional
pressure distribution can be specified as a function of the dimen-
sionless maximum pressure P ′

0 and the radial position ξ . In other
words, a general profile exists that presents all possible pressure
distributions.

The Hertzian pressure distribution1 where the contacting surfaces
are perfectly smooth is

PH (r/aH ) = P0,H

√
1 − (r/aH )2 (16)

where

P0,H = 3F
/

2πa2
H , aH = (3Fρ/4E ′)

1
3

The profile of the pressure distribution, especially in the contacts
where the dimensionless maximum pressure is less than 0.6, is very
similar to a normal (Gaussian) distribution. However, as the dimen-
sionless maximum pressure approaches one (the Hertzian contact),
the pressure distribution begins to deviate from the normal distri-
bution profile. The general profile for the pressure distribution for
spherical rough surface contact was found to be

P(ξ) = P0(1 − ξ 2)γ (17)

Fig. 9 Effect of roughness on equivalent pressure distribution.

Fig. 10 Dimensionless pressure distributions for spherical rough sur-
face contact.

where ξ = r/aL and γ can be calculated through a force balance

F = 2π

∫ aL

0

P(r) r dr (18)

Substituting Eq. (17) into (18), after evaluating the integral, one
finds

γ = 1.5P ′
0 (a′

L)2 − 1 (19)

where P ′
0 = P0/P0,H and a′

L = aL/aH .
At the limit, where roughness approaches zero, P ′

0 and a′
L both

approach one, γ = 0.5, and Eq. (17) yields the Hertzian pressure
distribution, Eq. (16). Knowing the general pressure distribution
profile, that is, Eq. (17), the problem is reduced to finding relation-
ships for P0 and aL . Additionally, the radius of the macrocontact
area, based on its definition, can be found if P0 and the pressure dis-
tribution are known; therefore, the key parameter is the maximum
contact pressure P0.

Dimensional Analysis
Dimensional analysis using the Buckingham � theorem has been

applied to many physical phenomena such as fluid flow, heat transfer,
and stress and strain problems. The Buckingham � theorem proves
that in a physical problem including n quantities in which there are m
dimensions the quantities can be arranged into n − m independent
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Table 2 Physical input parameters for spherical
rough contacts

Parameter Dimension

Effective elastic modulus E ′ M L−1T −2

Force F M LT −2

Microhardness Hmic M L−1T −2

Radius of curvature ρ L
Roughness σ L
Maximum contact pressure P0 M L−1T −2

dimensionless parameters.14 Table 2 summarizes the independent
input parameters and their dimensions for spherical rough contacts.
Hmic is an effective (mean) value for the microhardness of the softer
material in contact.

Lambert and Fletcher,15 using published experimental surface
data, proposed a correlation for the absolute average asperity slopes,
m, as a function of rms roughness σ ,

m = 0.076σ 0.52 (20)

(See Bahrami et al.6 for more detail.)
Because the surface slope m can be estimated using Eq. (20),

it is not considered as an independent input parameter and is not
included in Table 2.

All quantities in Table 2 are known to be essential to the maximum
contact pressure, and hence, some functional relation must exist in
the form of

P0 = P0(ρ, σ, E ′, F, Hmic) (21)

When the Buckingham � theorem is applied, there will be three
� groups so the maximum pressure can be more compactly stated
as a function of these three nondimensional parameters. Johnson,4

following the Greenwood and Tripp9 model, introduced a nondi-
mensional parameter α that we may call the roughness parameter,
as the ratio of roughness over the Hertzian maximum bulk deforma-
tion, ω0,H

α = σ/ω0,H ≡ σρ
/

a2
H = σ(16ρE ′2/9F2)

1
3 (22)

The other nondimensional parameters were chosen to be τ , the ge-
ometric parameter, and E ′/Hmic, the microhardness parameter. The
geometric parameter τ is defined as

τ = ρ/aH = (4E ′ρ2/3F)
1
3 (23)

The computer program explained in the preceding section was
run for a wide range of nondimensional (input) parameters, that
is, 0.005 ≤ α ≤ 100 and 50 ≤ τ ≤ 80,000, to construct Figs. 11–14.
These values of α and τ are chosen to span a wide range applicable
to most thermal contact resistance problems. Values of α include
the entire range of spherical rough contacts from very smooth (al-
most Hertzian α = 0) to extremely rough contacts. The geometric
parameter τ may be interpreted as a measure of the bulk strain. Be-
cause the bulk deformation is assumed elastic and also to justify the
half-space assumption,1 the radius of curvature must be much larger
than the contact area, ρ 	 aH . Thus, the lower bound of τ was fixed
(arbitrarily) at τ = 50, and the upper bound was selected to cover a
relatively large radii of curvature and light loads.

The effect of microhardness parameter E ′/Hmic on the maximum
contact pressure P ′

0 was observed to be minimum and may be ig-
nored (Figs. 11 and 12). Figure 13 shows the dimensionless maxi-
mum contact pressure in the form of a family of curves for a wide
range of α and τ . As α decreases, which is equivalent to a decrease
in roughness or an increase in radius of curvature or load, the dimen-
sionless maximum pressure approaches 1 (the Hertzian pressure).
Figure 14 shows the macrocontact radius as a function of α and τ .
As can be seen, when α is decreased, the dimensionless radius of
contact approaches one (the Hertzian contact). The dimensionless
maximum contact pressure and the macrocontact radius plots were
curve fitted. The following expressions can be used to estimate the

Fig. 11 Effect of microhardness on dimensionless maximum contact
pressure, τ = 5333.

Fig. 12 Effect of microhardness on dimensionless maximum contact
pressure, τ = 247.

maximum dimensionless contact pressure and the dimensionless
radius of contact, respectively:

P ′
0 = P0/P0,H = 1

/(
1 + 1.37ατ−0.075

)
(24)

a′
L = aL/aH = 1 − 1.50 ln P ′

0 − 0.14 ln
2 P ′

0 − 0.11 ln
3 P ′

0 (25)

An expression for the nondimensional radius of the macrocon-
tact, a′

L , was developed as a function of α and τ in the form of
a′

L = c0
√

(α + c′
0), where c0 and c′

0 are functions of τ only. In the
limit where α → 0 (Hertzian contacts) as shown in Fig. 13, a′

L → 1;
therefore, a relationship between c0 and c′

0 can be found such that
c′

0 = (1/c0)
2. Thus, c0 was curve fitted, and the following correlation

for a′
L was obtained

a′
L = aL

aH
= 1.80

√
α + 0.31τ 0.056

τ 0.028
(26)

The following approximate expression for aL is proposed for con-
tacts where the effective radius of curvature is relatively large, that
is, approaching a flat surface

a′
L = 1.5

√
α + 0.45 (27)

The rms difference between Eqs. (24–26) and the program results
is estimated to be less than 8% in the range of 0 ≤ α ≤ 100 and
50 ≤ τ ≤ 80,000.
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Fig. 13 Dimensionless maximum contact pressure.

Fig. 14 Dimensionless radius of macrocontact.

Elastic Compression
In most engineering applications, the size of the contacting bod-

ies is finite, and/or the radius of curvature is large, especially in the
contacts where the surfaces are almost flat or slightly curved. When
these surfaces are placed in contact, by applying a specific force that
we call the critical force Fc, the macrocontact area reaches to the
boundaries of the contacting bodies, that is, aL = bL , as shown in
Fig. 15. When the force is increased beyond the critical force, the
size of the macrocontact remains constant, but the contact pressure
increases. Because the bulk deformation is assumed to be elastic,
we refer to the preceding contact problems as elastic compression.
Elastic compression cannot be treated as a half-space contact prob-
lem because the half-space assumption cannot be justified especially
in the regions close to the edge of the contacting bodies. The critical
force, the critical pressure distribution, and the pressure distribu-
tion associated with the critical force for a specified spherical rough
contact assembly are unique.

In contact stress theory, the displacement at any point in the con-
tact surface depends on the distribution of pressure throughout the
whole contact. According to Johnson,4 the earlier described inter-
connection may be avoided if the solids are modeled by a simple
Winkler elastic foundation rather than a half-space. As shown in
Fig. 16, the elastic compression approximation implies that as load
passes the critical load the elastic foundation, which rests on a rigid
base, is compressed by the rigid spherical indenter. There is no in-
teraction between the springs of the model, that is, shear between
adjacent elements of the foundation is ignored. Therefore, contact
pressure at any point depends only on the displacement at that point.
Equation (17) can be used to calculate the contact pressure distribu-

a) Half-space contact problem b) Critical force

Fig. 15 Contact of two finite spherical rough bodies.

Fig. 16 Elastic foundation, Winkler model.

tion, where the external force is less than or equal to the critical load.
Beyond the critical load, where F > Fc, the size of the macrocontact
remains constant, and the elastic foundation approximation may be
used to determine the pressure distribution. With assumption of the
elastic foundation approximation, a uniform increase will be added
to the critical pressure distribution at each point in the contact area.
Therefore, the general pressure distribution can be summarized as

P(ξ) =
{

P0(1 − ξ 2)γ F ≤ Fc

P0,c(1 − ξ 2)γc + (F − Fc)
/

πb2
L F ≥ Fc (28)

where aL = bL for F ≥ Fc and P0,c and γc are the maximum pressure
and the exponent of the critical pressure distribution, respectively.
Figure 17 shows the predicted pressure distributions for some values
of the external load as an example. The parameters of the contact
are ρ = 10 m, E ′ = 112 GPa, σ = 2 µm, and bL = 12 mm.

To find a relationship for the critical force, Eqs. (24) and (27)
should be solved simultaneously where aL = bL . Equation (27) is a
function of α only, and it was developed for relatively large radii of
curvature, that is, the situations where the elastic compression more
likely occurs. The critical force can be estimated from

Fc = (4E ′/3ρ)
[

max
{

0,
(
b2

L − 2.25σρ
)}] 3

2 (29)

where max{x, y} returns the maximum value between x and y.
A criterion for defining the flat surface where the surface curvature

has a negligible effect on the pressure distribution can be derived
by setting Fc = 0. Setting Fc = 0 means that if no load is applied
aL = bL ; thus, the contacting surfaces are ideally flat, which leads to

b2
L

/
σρ ≤ 2.25 (30)
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Fig. 17 Contact pressure distribution.

For spherical surfaces with large radii of curvature, Clausing and
Chao16 used a geometrical approximation that relates the maximum
out-of-flatness δ (Fig. 16) to the radius of curvature,

ρ = b2
L

/
2δ (31)

When Eqs. (30) and (31) are combined, the flat surface criterion in
terms of surface out-of-flatness can be obtained as

δ/σ ≤ 1.12 (32)

In other words, if the out-of-flatness and the roughness of a surface
are in the same order of magnitude, the surface is flat, that is, surface
curvature has no effect on the contact pressure distribution. This
criterion is derived based on the concept that the effect of surface
curvature on the contact pressure is negligible in flat or conforming
contacts. In the second part of this study,17 another criterion will be
defined based on a thermal contact resistance prespective.

Conclusions
The mechanical contact of spherical rough surfaces was studied,

and a new analytical model was developed. The deformations of
surface asperities were considered to be plastic, and the bulk defor-
mation was assumed to remain within the elastic limit.

A closed set of governing relationships was derived and solved
numerically. A computer code was developed to solve the governing
relationships. The algorithm of the numerical procedure is explained
in the Appendix. The pressure distributions predicted by the model
were plotted for different values of surface roughness, and it was
shown that as the surface roughness approaches zero the predicted
pressure distribution approaches the Hertzian pressure.

Additionally, it was shown that a general pressure distribution
profile exists that encompasses all spherical rough contacts. The
maximum contact pressure was observed to be the key parameter that
specifies the contact pressure distribution. The suggested general
pressure distribution expression yields the Hertzian contact pressure
at the limit, where roughness is set to zero.

When dimensional analysis was used, the number of indepen-
dent nondimensional parameters that describe the maximum con-
tact pressure was determined to be three, the roughness α, the ge-
ometric τ , and the microhardness E ′/Hmic parameters. The effect
of the microhardness parameter E ′/Hmic on the maximum contact
pressure was observed to be small and ignored. When curve-fitting
techniques were used, simple correlations were suggested for calcu-
lating the maximum contact pressure distribution and the radius of
the macrocontact area, as functions of roughness α, and geometric
parameters τ .

An expression for estimating the critical load was derived, where
aL = bL . The Winkler approximation was used to derive a relation-
ship for the contact pressure distributions, where the loads are higher

than the critical load. This expression along with the described cor-
relation formed a general pressure distribution that encompasses
all possible contact cases ranging from the smooth Hertzian to the
conforming rough contact.

Also a criterion was offered to identify the flat surface, where
the effect of surface curvature on the contact pressure can be ne-
glected. Based on this criterion, the surface can be considered flat
if the surface out-of-flatness and roughness are in the same order of
magnitude.

The advantages of the present model over the Greenwood and
Tripp9 (GT) model are as follows:

1) The present model requires two input surface parameters,
roughness σ and surface slope m. The GT model needs three in-
put parameters, that is, σ , β, and η.

2) Unlike the summit radius β and the microcontact density η in
the GT model, the present model input parameters can be measured
directly, and they are not sensitive to the surface measurements.

3) A pressure distribution profile was proposed as a function of
the maximum contact pressure, which covers all possible contact
cases.

4) Simple correlations for determining the maximum contact pres-
sure and the radius of macrocontact as functions of two nondimen-
sional parameters, that is, the roughness parameter α and the geo-
metric parameter τ , were offered.

Appendix: Numerical Procedure
The following procedure (Fig. A1) is used to solve the governing

set of relationships outlined in the present model. A value of u0,1

is assumed, and pressure distribution is computed. P(r) is then
used to calculate an improved ωb (r ). This improved ωb (r ) now is
used to calculate a new pressure distribution Pnew (r ), and so on,
until P (r ) converges. The algorithm of the preceding procedure is
shown in the inner loop flow chart, Fig. A2. The pressure distribution
P (r ) is integrated and compared with the external load F , and
the relative force error F∗

1 is calculated. Here u0,2 is assumed, and
all of the mentioned steps are repeated for u0,2 to compute F∗

2 .
With the use of linear interpolation, unew and then F∗

new are similarly

Fig. A1 Numerical algorithm.
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Fig. A2 Pressure-displacement iteration procedure, the inner loop.

calculated by using the inner-loop procedure. If F∗
new is not within

the acceptable tolerance, u0 and F∗ are updated, and the iterative
pressure–displacement calculation procedure is repeated until the
convergence is achieved. The loop is continued until the integrated
pressure and external load are within an acceptable tolerance.

References
1Hertz, H., “On the Contact of Elastic Bodies,” Journal fur die reine und

angewandie Mathematic, Vol. 92, 1881, pp. 156–171 (in German).
2Tabor, D., The Hardness of Metals, Oxford Univ. Press, Amen House,

London, 1951.
3Greenwood, J. A., and Williamson, B. P., “Contact of Nominally Flat

Surfaces,” Proceedings of the Royal Society of London, Series A: Mathemat-
ical and Physical Sciences, Vol. A295, 1966, pp. 300–319.

4Johnson, K. L., Contact Mechanics, Cambridge Univ. Press, Cambridge,
England, U.K., 1985.

5Williamson, J. B., Pullen, J., Hunt, R. T., and Leonard, D., “The Shape
of Solid Surfaces,” Surface Mechanics, American Society of Mechanical

Engineers, New York, 1969, pp. 24–35.
6Bahrami, M., Culham, J. R., Yovanovich, M. M., and Schneider, G. E.,

“Review of Thermal Joint Resistance Models for Non-Conforming Rough
Surfaces in a Vacuum,” American Society of Mechanical Engineers, Paper
HT2003-47051, July 2003.

7Cooper, M. G., Mikic, B. B., and Yovanovich, M. M., “Thermal Contact
Conductance,” International Journal of Heat and Mass Transfer, Vol. 12,
1969, pp. 279–300.

8Hegazy, A. A., “Thermal Joint Conductance of Conforming Rough
Surfaces: Effect of Surface Micro-Hardness Variation,” Ph.D. Dissertation,
Dept. of Mechanical Engineering, Univ. of Waterloo, Waterloo, ON, Canada,
1985.

9Greenwood, J. A., and Tripp, J. H., “The Elastic Contact of
Rough Spheres,” Journal of Applied Mechanics, Vol. 89, No. 1, 1967,
pp. 153–159.

10Gladwell, G. M. L., Contact Problems in the Classical Theory of
Elasticity, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands,
1980, pp. 81–86.

11Francis, H. A., “Application of Spherical Indentation Mechanics To Re-
versible and Irreversible Contact Between Rough Surfaces,” Wear, Vol. 45,
1977, pp. 221–269.

12Tsukada, T., and Anno, Y., “On the Approach Between a Sphere and
a Rough Surface, 1st Report—Analysis of Contact Radius and Interface
Pressure,” Journal of the Japanese Society of Precision Engineering, Vol. 45,
No. 4, 1979, pp. 473–479 (in Japanese).

13Sasajima, K., and Tsukada, T., “On the Approach Between a Sphere and
a Rough Surface, 2nd Report—Critical Condition to Yield Plastic Deforma-
tion in Contacting Bodies,” Journal of the Japanese Society of Precision
Engineering, Vol. 47, No. 6, 1981, pp. 694–699 (in Japanese).

14Streeter, V. L., and Wylie, E. B., Fluid Mechanics, McGraw–Hill, New
York, 1975, Chap. 4.

15Lambert, M. A., and Fletcher, L. S., “Thermal Contact Conductance of
Spherical Rough Metals,” Transactions of ASME: Journal of Heat Transfer,
Vol. 119, No. 4, 1997, pp. 684–690.

16Clausing, A. M., and Chao, B. T., “Thermal Contact Resistance
in a Vacuum Environment,” Journal of Heat Transfer, Vol. 87, 1965,
pp. 243–251; also ASME Paper 64-HT-16, 1964.

17Bahrami, M., Culham, J. R., Yovanovich, M. M., and Schneider,
G. E., “Thermal Contact Resistance of Non-Conforming Rough Surfaces
Part 2: Thermal Model,” Journal of Thermophysics and Heat Trans-
fer, Vol. 18, No. 2, 2004, pp. 218–227; also AIAA Paper 2003-4198,
June 2003.


